DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to develop, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying function is its reinforcement knowing (RL) step, which was utilized to refine the model's reactions beyond the basic pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, ultimately improving both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's equipped to break down complex questions and factor through them in a detailed way. This guided thinking procedure enables the design to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation design that can be integrated into numerous workflows such as agents, sensible reasoning and information analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, enabling effective inference by routing questions to the most pertinent professional "clusters." This technique permits the model to specialize in different issue domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as a teacher model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent harmful material, and evaluate designs against essential security criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e . To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, create a limit boost demand and connect to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Establish consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid hazardous content, and evaluate models against crucial safety requirements. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general circulation includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 model.
The design detail page supplies important details about the design's abilities, pricing structure, and implementation standards. You can find detailed use directions, including sample API calls and code snippets for combination. The design supports various text generation jobs, consisting of material creation, code generation, and question answering, utilizing its support finding out optimization and CoT thinking capabilities.
The page also includes deployment choices and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of instances, enter a variety of circumstances (between 1-100).
6. For example type, select your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the model.
When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in play area to access an interactive interface where you can experiment with different triggers and change design criteria like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For example, content for reasoning.
This is an exceptional method to check out the model's thinking and text generation capabilities before integrating it into your applications. The playground supplies immediate feedback, assisting you understand how the design reacts to numerous inputs and letting you tweak your prompts for optimal results.
You can rapidly check the design in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning parameters, and sends out a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, forum.batman.gainedge.org you can tailor pre-trained models to your use case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two convenient methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you select the method that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model browser displays available models, with details like the provider name and model abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows key details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if applicable), showing that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to view the model details page.
The model details page includes the following details:
- The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you release the model, it's recommended to evaluate the design details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the immediately generated name or develop a customized one.
- For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable instance types and counts is vital for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
- Review all setups for precision. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the design.
The deployment process can take several minutes to finish.
When deployment is complete, your endpoint status will change to InService. At this moment, the design is all set to accept reasoning demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is complete, you can invoke the design using a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Clean up
To prevent unwanted charges, finish the actions in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the model utilizing Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases. - In the Managed releases section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop innovative services utilizing AWS services and accelerated compute. Currently, he is focused on establishing strategies for fine-tuning and optimizing the reasoning efficiency of big language designs. In his complimentary time, Vivek takes pleasure in treking, enjoying films, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing solutions that assist customers accelerate their AI journey and unlock business worth.